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AbstractÐMany distributed systems must be scalable, meaning that they must be economically deployable in a wide range of sizes

and configurations. This paper presents a scalability metric based on cost-effectiveness, where the effectiveness is a function of the

system's throughput and its quality of service. It is part of a framework which also includes a scaling strategy for introducing changes

as a function of a scale factor, and an automated virtual design optimization at each scale factor. This is an adaptation of concepts for

scalability measures in parallel computing. Scalability is measured by the range of scale factors that give a satisfactory value of the

metric, and good scalability is a joint property of the initial design and the scaling strategy. The results give insight into the scaling

capacity of the designs, and into how to improve the design. A rapid simple bound on the metric is also described.

The metric is demonstrated in this work by applying it to some well-known idealized systems, and to real prototypes of

communications software.

Index TermsÐScalability, distributed systems, scalability metric, software performance, performance model, layered queuing,

performance optimization, replication.
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1 INTRODUCTION

MANY distributed systems must be scalable. Typical
present and future applications include web-based

applications, e-commerce, multimedia news services, dis-
tance learning, remote medicine, enterprise management,
and network management. They should be deployable in a
wide range of scales, in terms of numbers of users and
services, quantities of data stored and manipulated, rates of
processing, numbers of nodes, geographical coverage, and
sizes of networks and storage devices. Small scales may be
just as important as large scales. Scalability means not just
the ability to operate, but to operate efficiently and with
adequate quality of service, over the given range of
configurations. Increased capacity should be in proportion
to the cost, and quality of service should be maintained.

The framework presented here, and described in a

preliminary way in [1], has the following features which

are lacking in previous work on scalability metrics:

. it separates the evaluation of throughput or quantity
of work from quality of service,

. it allows any suitable expression for evaluating
quality of service,

. it adds to the system design a formal notion of a
scaling strategy, which is a plan for scale-up. The
plan can introduce different kinds of changes at
different scales, since it often happens that all the
components cannot be scaled simultaneously. This

generalizes the notion of a scale factor, which
becomes a parameter of the strategy,

. it incorporates scalability enablers, which express
aspects of the design that should be tuned for
efficient operation at any given scale.

1.1 Existing Scalability Analysis

A variety of scalability metrics have been developed for
massively parallel computation, to evaluate the effective-
ness of a given algorithm running on different sized
platforms, and to compare the scalability of algorithms.
These metrics assume that the program runs by itself, on a
set of k processors with a given architecture, and that the
completion time T measures the performance.

Three related kinds of metrics have been reported:
speedup metrics, efficiency metrics, and scalability metrics.
The following definitions give the flavor of the proposed
metrics, although there are variations in detail among
different authors:

. Speedup S measures how the rate of doing work
increases with the number of processors k, compared
to one processor, and has an ªidealº linear speedup
value of S�k� � k.

. Efficiency E measures the work rate per processor
(that is, E�k� � S�k�=k), and has an ªidealº value of
unity.

. Scalability  �k1; k2� from one scale k1 to another scale
k2 is the ratio of the efficiency figures for the two
cases,  �k1; k2� � E�k2�=E�k1�. It also has an ideal
value of unity.

A typical metric is the fixed size speedup, in which the
scaled-up base case has the same total computational work,
and the speedup S is the ratio of the completion times (i.e.,
S�k� � T �1�=T �k�).

The above three metrics are described in [2], for a
homogeneous distributed memory multiprocessor such as a
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hypercube or a mesh. The authors considered a fixed size
case, a fixed time case, and a memory-bounded case. In [3],
a generalized speedup (taking a better account of memory
access operations) is proposed for systems with shared
virtual memory, and an iso-speed scalability metric for an
algorithm-machine combination, which relates the work-
load capacity of the system at two different scales. In [4], an
isoefficiency analysis is given, based on the question: At what
rate should the problem size increase, with respect to the
number of processors, in order to keep the ªefficiencyº
fixed? In [5], a toolkit called the Modeling Kernel is
described, which uses a model based on the program's
parse tree. The choice of the scalability metric is left to the
user. In [6], the techniques of experimentation, analytical
modeling and simulation are compared, as they apply to
studying parallel system performance. Scalability captures
both the available and the delivered computing power, with
the differences due to the overheads of parallel processing.
The paper identifies overheads from different sources
(hardware, software, algorithm), and summarizes metrics
which include constant problem size scaling, time-con-
strained scaling, memory-constrained scaling and isoeffi-
ciency scaling.

1.2 The Need for a New Scalability Metric and a
Methodology

Distributed systems require a more general form of
scalability metric, because:

. Rather than running a single job to completion, these
systems are shared by many jobs and new jobs arrive
as others complete, so the behavior should be
modeled as a steady state.

. Throughput and delay should be evaluated sepa-
rately as productivity factors. With a single job, the
throughput is just the inverse of the job time; in a
distributed system with an average of N jobs the
throughput is N=�job time�. The mean number of
users adds a degree of freedom to the analysis.

. a greater variety of communications mechanisms
may become involved, with their own scalability
properties. Reliable multicasts, for example, can
introduce serious scalability problems.

. The productivity evaluation should be further
expanded because there are more aspects to ªade-
quate serviceº in distributed systems, called quality-
of-service (QoS) figures. We shall use the term QoS
here to include any measure of the goodness of a
service (for instance, it could include a failure related
or availability measure). For simplicity, the examples
considered in this paper are restricted to quality of
service based on mean delay, but the framework
includes any measure which can be evaluated.

. The ªsizeº of the system is more complex because of
the heterogeneous physical architecture of distrib-
uted systems. Instead of just a number of processors
to measure size, one should consider symmetric
multiprocessor nodes, replicated services, alterna-
tive networks and processors with different types
and prices, and so forth. ªSizeº becomes
multidimensional.

. Additional cost factors besides cost of processors,
storage and bandwidth should be considered, such
as the cost of software licenses, and perhaps the cost
of operation such as management and help desks.

. The strategy for scaling up a distributed system is
more complex than simply adding processors,
storage and bandwidth. It may include replicating
software services and storage, for instance, and
modifying the communications mechanisms. An
explicit scaling strategy is needed as part of the
definition of the metric. This is a counterpart of the
various kinds of parallel system scaleup defined in
different metrics, (e.g., the fixed-time or fixed-speed
scaleup metrics).

There has been a little previous work on distributed
systems, in several distinct flavors. In [7], the scalability of
Microsoft's Windows NT operating system is discussed
using an in-memory subset of Microsoft's SQL server
benchmark, to focus on the CPU performance. Scalability
analysis is carried out by plotting a graph of performance
figures obtained from this benchmark versus the number of
processors. This study is quite close to the parallel systems
studies, having homogeneous processor resources and
ignoring software resources.

In [8], a scalable load monitoring service and a scalable
resource query service for managing resources distributed
across a network are described. In this work, scalability
means a linear relationship between the bandwidth
requirements (i.e., the amount of traffic generated on the
network) and the number of hosts on the network.

In [9], the authors argue that the existing solutions to
provide transparent access to network services need to be
modified for the internet paradigm, considering the scal-
ability, fault tolerance and load balancing issues.

In [10], models are used to enable design-time modeling
of complex large scale distributed applications. The authors
analyze how some design parameters for the example
system affect the application's QoS (defined as end-to-end
mean response time) and scalability, with respect to the
number of nodes and the number of domains.

In [11], a scalability metric suitable for distributed
systems, called P-scalability, was examined. It employs the
ªpowerº measure P �k� of Giessler [12], and the cost of all
system resources at a scale factor k, as follows:

P -scalability �k1; k2� � �P �k2� � Cost�k1��=�P �k1� � Cost�k2��
P �k� � �Throughput�=�ResponseTime�:

This metric combines capacity and response time (both are
present in the power P) with cost. However, it has a defect
(which is cured in [1] and the present work), in that it
credits unbounded value to response times approaching
zero. In fact, however, for most users there is a required
response time, below which further reduction has little or
no value. This metric therefore distorts the scalability by
rewarding very short responses, which are actually not very
useful.

In [1], there is a preliminary description of the metric
presented here. The present paper adds a more complete
description of the algorithms used to compute the metric,
and of a number of idealized cases which validate its
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intuitive meaning. It introduces an upper bound on the
metric, and gives the details of the scalability assessment of
two substantial applications. It shows that the present
metric is a generalization of some of the well-known metrics
for scalability of parallel computations.

2 A SCALABILITY METRIC WITHIN A SCALING

STRATEGY

The scalability framework is based on a scaling strategy for
scaling up (or down) a given system, controlled by a scale
factor k. We suppose that each scaled configuration is
determined by a set of variables (x�k�; y�k�) (which may take
numeric values, or enumerated alternative choices), divided
into two groups:

. x�k� denotes a set of scaling variables, determined by
the strategy for each value of k,

. y�k� denotes a set of adjustable variables, called
scaling enablers, which are tuned to maximize the
productivity for any given k. Since k determines x by
the strategy, and x influences y through the optimal
tuning, the values of y are effectively determined
by k.

Examples of scalability enablers are the allocation of
processes to the processors, priorities, replication of
processes and data, the creation of threads within processes,
the memory available for buffers, tuning of the middleware
parameters, network bandwidth and the choice of commu-
nication protocols. For a simple example, a database system
might have a scaling strategy which defines the users,
processors, and the database size as functions of k:

- Nusers � k � the number of active users
- Datasize � 10; 000 log10 k � the assumed size of the

database, in records, as k increases.
- Nproc � dk=100e � the number of processors to be

provided, one per 100 users, rounded up.

Fig. 1 illustrates this scaling path in the space (Datasize,
Nproc), over the range k � 100 to 300.

At each value of the scale factor, the scaling strategy and
the optimal values of the enablers determine the scaled

configuration, from which the cost, capacity, and quality
values can be evaluated and used in the scalability metric.

2.1 The Scalability Metric

The scalability metric is based on productivity. If productiv-
ity is maintained as the scale changes, the system is
regarded as scalable. Given these three quantities:

. ��k� � throughput in responses/sec, at scale k

. f�k� � average value of each response, calculated
from its quality of service at scale k,

. C�k� � cost at scale k, expressed as a running cost
per second to be uniform with �,

then the productivity F �k� is the value delivered per
second, divided by the cost per second:

F �k� � ��k� � f�k�=C�k�:
The scalability metric relating systems at two different scale
factors is then defined as the ratio of their productivity
figures:

 �k1; k2� � �F �k2��=�F �k1��: �1�
This is the scalability metric that is used in the rest of this
paper. Frequently, k1 is fixed at a known value and the
metric is written as  �k2� or  �k�.

The system is regarded as ªscalableº from configuration 1
to configuration 2 if productivity keeps pace with costs, in
which case the metric  will have a value greater than or not
much less than unity. In this work, we arbitrarily use the
threshold value of 0.8, and say the system is scalable if
0:8 <  ; the threshold value should reflect what is an
acceptable cost-benefit ratio to the system operator. The
value of k at the threshold is the scalability limit of the
system. If  rises above 1.0, we will say the system has
ªpositive scalabilityº (like superlinear speedup).

Of the three quantities that enter the metric, throughput is
self-evident. The cost is not a one-time capital cost, but is
expressed as a rental cost, to express costs and benefits
consistently per unit time. Cost can include the cost of
processor, storage, networks, software, management, help
desks, etc. The present work will include only a few of these
factors, for illustration. The value functionf�k� is determined
by evaluating the performance of the scaled system, and
may be a function of any appropriate system measure,
including delay measures (mean, variance or jitter, prob-
ability of delay exceeding a threshold), availability, or the
probability of data loss or timeouts. In this work, for
purposes of explanation and demonstration, we will
consider only the mean response time T �k� at scale factor
k, compared to a target value T̂ , in the following value
function:

f�k� � 1=�1� �T �k�=T̂ ��: �2�
With this value function, from (1) and (2) the scalability
metric for scale k2 relative to k1 is, after a little
simplification:

 �k1; k2� � �2 � C1 � �T1 � T̂ �
�1 � C2 � �T2 � T̂ �

: �3�
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2.2 Defining and Obtaining the Measures

In practice, the choice of the function f will depend on the

system goals and on what is practical to estimate. In the

tradition of other scalability measures, the metric  is based

on quantities that can be predicted by an analytic calcula-

tion. The calculation is more complex than in some other

metrics, but it is carried out below using a well-established

queueing or extended queueing analysis. If the scaled-up

system is actually constructed and instrumented, the metric

can also be calculated from measurements of its operation.

3 SCALABILITY METRIC APPLIED TO IDEALIZED

CASES

To show the behavior of the metric  , it is applied here to

standard idealized systems that are widely understood at
an intuitive level, which give analytic solutions for  . In all

cases, the value of k for the base case is taken as 1, and the

metric is written as  �k�.
3.1 Case I: General Speed-Scaled Open System

with Proportional Costs

Here we consider any system architecture and behavior (not

necessarily solvable analytically) which has external arri-

vals and a steady state. Configuration 1 is an arbitrarily

chosen reference, and configuration 2 is uniformly sped-up

or time-scaled by a factor k, so the input rate and every
component (computers, networks, storage) is faster. Cost is

scaled by a factor k so that C2 � kC1, and �2 � k �1,

T2 � T1=k. A little manipulation of (3) gives:

 �k� � 1� �kÿ 1�T1

T1 � kT̂
; lim

k!1
 �k� � 1� T1

T̂
: �4�

This example has positive scalability with a bounded

increase. If T1 � T̂ , then  levels off around a value of 2.
This agrees with intuition. The throughput increase pays

for the extra cost in exact proportion, and the shorter

response time provides a bonus which is bounded because

f is bounded as T goes to 0.

3.2 Case II: General Speed-Scaled Closed System
with Fixed User Population

In this case, the system is closed instead of open, meaning

that its load is generated by users or jobs which remain in

the system, cycling, and creating a new request as soon as

the previous response is over. When there are N users or

jobs and a mean response time T , the system throughput is

� � N=T . Again we consider any system architecture and

behavior with a single class of users, that is all jobs make the

same demands, and an arbitrary starting point with k � 1.

The cost is scaled by k, but the number of users is fixed at N

and is not scaled, and the target mean response time is also

fixed.
Configuration 2 is again uniformly sped-up or time-

scaled by a factor k, so every device and server is faster.

Thus just as in Case I, C2 � kC1, �2 � k�1, and T2 � T1=k,

and  �k� is again given by (4).
The intuition about this system is identical to that in

Case I and the results agree in a similar way.

3.3 Case III: Closed Balanced Ideal Queueing
Network, Scaled in Users and Speed

This case is like the last one but more restricted in its
assumptions about the system, which has a separable
queueing network performance model with N jobs and k

servers, with equal demands D seconds per response to all
servers, and single, constant-rate servers. The throughput
and response time are [13]:

� � n

��N � kÿ 1�D� ; T � n
�
� �N �K ÿ 1�D:

In configuration 2, the number of jobs N , and the server
speeds and costs are scaled by a factor k. Thus, configura-
tion 2 has server demands of D=k seconds per response, at
each of the K servers. Substituting into (3) with N2 � kN1,
D2 � D1=k, and C2 � kC1 we get

 �k� � k�N1 �K ÿ 1�
�kN1 �K ÿ 1� �

�N1 �K ÿ 1�D1 � T̂
�kN1 �K ÿ 1�

�
D1

k

�
� T̂

�5�

lim
k!1

 �k� � �N1 �K ÿ 1���N1 �K ÿ 1�D1 � T̂ �
N1�N1D1 � T̂ �

:

By inspection, this limit is greater than 1.0, but if K � N1

the limit approaches 1.0.

3.4 Case IV: Asymptotic General Closed System
Scaled in Users and Speed

This combines the two previous cases, but only considers
the asymptotic condition in which the system is effectively
bottlenecked at its slowest server, even in the base
configuration. The system throughput is effectively deter-
mined by the demand at this server, giving � � 1=Dmax. In
configuration 2, Dmax;2 � Dmax;1=k, and thus throughput
follows �2 � 1=Dmax;2 � k � �1. As N2 � kN1, and C2 � kC1,
the response time is roughly constant at T � kN=k� � N=�,
and  � 1:0.

3.5 Case V: System with a Single Nonscalable
Bottleneck and Increasing Users

Now consider the same case of a general closed system with
a bottleneck, as in Case III, in which the bottleneck device
cannot be speeded up, which in turn limits � to some
constant value �max. The population N and costs C are
proportional to k. Then, for large k T ! N=�max and:

 �k� � �max

�1
� C1

kC1
� N1=�1 � T̂
kN1=�max � T̂

! �max

�1

� �2 1

k2
: �6�

Thus, the scalability declines as 1=k2, for any closed system
that has a single dominant bottleneck.

3.6 Case VI: Closed Balanced System Scaled by
Replication of Servers and User Population

As in Case III, this system has a separable queueing model
with balanced demands on K servers. To scale it up, each
server is replicated k times and its load is divided equally
among the k replicas of each server. If there is no overhead
for managing replicas, it seems intuitively clear that this is a
perfectly scalable system. Consider the scaling path:
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N2 � kN1; K2 � kK1; D2 � D1=k; C2 � kC1:

Following Case III, but with K2 � kK1 we find that  > 1
for all k, and for large k the limit is almost the same:

lim
k!1

 �k� � �N1 �K ÿ 1���N1 �K ÿ 1�D1 � T̂ �
N1��N1 �K�D1 � T̂ �

:

Again, if K � N1,  ! 1:0. For an unbalanced system,
the result is also the same.

3.7 Case VII: Effect of Overhead Costs

In Case VI, suppose that for k > 1 the demands D are
augmented by coordination overhead, for example, to
maintain overall system state data. The replicas, costs, and
user population are all scaled by a factor k. An efficient
coordination mechanism might limit the overhead cost to a
slowly increasing amount of overhead, giving a scaling
relationship for the server demands, such as

D1 � �D1=k� �D0 log k:

Then, once again following the approach of Case III, (3)
gives:

 �k� � k�N1 �K1 ÿ 1�D1

�kN1 �K1 ÿ 1��D1=k�D0 log k�
� �N1 �K1 ÿ 1�D1 � T̂
��kN1 �K1 ÿ 1��D1=k�D0 log k� � T̂ � �7�

which decreases slowly towards zero as k!1. Thus,
scalability is moderate for ªsmallº values of k.

If the baseline system is quite large, so that N1 is large
compared to K1 and to T̂ =D1, then (7) can be simplified to
	 � k=�1� �D0=D1�k log k�2, which is greater than unity for
values of k that satisfy the approximate inequality���
k
p � log k < D0=D1. As an example, suppose that D0=D1,
which describes the relative magnitude of the coordination
overhead, is 0.1. Then at k � 10, this gives  � 2:5, and  >
1 for values of k up to nearly 40. A larger overhead ratio will
limit the scalability more.

3.8 Case VIII: A Closed System with Scaled
Population and Target Response Times

This case considers a scaling path in which response
degradation is accepted in proportion to a rising user
population in an otherwise unscaled system. This is quite a
different system goal, and illustrates the flexibility of the
framework. We consider the balanced closed system of Case
III, but with constant values of C and D. The analysis of
Case III then gives the value function

f � 1=�1� T=T̂ � � 1=�1� �N �K ÿ 1�D=T̂ �:
If T̂2 � k T̂1 and N2 � kN1, then d

dk f > 0, and it is also
well-known that d

dk � � 0. Then, it can be deduced from (3)
that  is an increasing function of k, and that it approaches a
constant limit greater than 1. This is a symptom of the well-
known fact that the response time rises at the same
asymptotic rate as the population.

The conclusion is that, if response time degradation is
accepted in proportion to users and is included in the
scalability function, closed balanced systems are infinitely
scalable in population.

3.9 Case IX: A Single Scaled Open Multiserver
Queue

Often one tries to scale up a system by adding servers. This

case considers an ideal multiserver queue (M=M=m queue)

in which the number of servers m, the arrival rate �, and the

cost C are all scaled by a factor k. There is no server

coordination overhead, and the queue shares the load in an

ideal fashion, so the metric should show infinite scalability.
The solution is well-known but lengthy, so it will not be

shown here, but it does show that  > 1 for all k, which

supports the intuition.
As k!1, the metric approaches the form:

 ! 1� 1

T̂
S � � � PQ

� � �1ÿ ��
� �� �. 1� S

T̂

� �
> 1 �8�

where S is the service time at any server, � is the arrival

rate, � is the utilization of each server (� � �S=m), and PQ
represents the Erlang±C formula for the probability that all

m servers are busy. The fraction with � � PQ in the

numerator approaches zero with large k, and  approaches

1 in the limit.

3.10 Summary

The Cases I±IX cover a wide range of well-understood

systems and of scaling policies, and reveal how the metric

proposed in this paper will evaluate different kinds of

systems, and agrees with intuitive judgement. This gives

some confidence in applying it.
The parallel-system metrics surveyed in Section 2 also fit

into the general framework of this paper as special cases. If

we consider a steady state with one job at a time being

executed, one after another, and fixed-size scalability, then a

parallel computer is a closed system with replication and

overhead, as in Case VII (except the user population is not

scaled). The time to completion is rewarded through the

throughput term, with � � 1=T . The QoS function consid-

ered in most metrics is simply f � 1, since they only

evaluate the time to completion and that is already taken

into account in the throughput.

4 PROCEDURE FOR SCALABILITY ANALYSIS

The analysis in the previous section depended on closed

form solutions, which are usually not available. Fig. 2

shows a procedure, which uses practical numerical

methods:

. numerical performance approximations to calculate
the productivity measure for each scaled system,
given the values for the sets x and y of system
parameters. In this work, response time and
throughput were calculated.

. numerical search techniques to maximize the pro-
ductivity measure over the scaling enabler variables
y. The performance model is solved at each step of
the search.

The procedure of Fig. 2 will calculate  for the scale-up

from a given reference system to a scaled version for some
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value of k, including the possibility of comparing multiple

candidate scaling paths.
The performance evaluation can be done with any

suitable model. The models used in this work are analytic

layered queueing networks or LQNs ([14], [15]), which are

kinds of systematic extended queueing models that use

well-known approximations for solution. LQNs were

designed to evaluate distributed systems. They directly

represent software servers as servers with queues, and

several kinds of software resources which must be scaled,

including mutexes and process pools or thread pools.

4.1 Optimizing the Productivity Metric Using
Simulated Annealing

In order to maximize the productivity of a particular

configuration by tuning the scalability enablers y, this

research uses the simulated annealing algorithm described

in ([16], [17], [18]). It is used because it is robust, in the sense

that it can handle a wide variety of relationships, including

discontinuous functions and integer or categorical vari-

ables. Its disadvantages are that it can consume very many

search steps, and it gives no guarantees about convergence.
Simulated annealing takes random steps controlled by a

parameter called the ªtemperatureº � . The productivity

function is evaluated and the perturbation is accepted if it

gives an increase, or is either accepted or rejected if it gives

a decrease. The acceptance probability is smaller for a
greater decrease, and as � decreases, this probability also is

reduced. Termination was decided if the fraction of the

accepted moves was less than two percent for two

successive full iterations, or if the number of iterations

exceeded a predefined limit. The best solution found was
retained and used as the final result.

5 AN OPTIMISTIC BOUND ON THE SCALABILITY

METRIC

Optimistic assumptions about resources can greatly simpli-

fy the calculations, and at the same time give a bounding

value on productivity. First, the optimistic assumption

gives an upper bound on performance, and thus on the

value function. Then further assumptions may be able to do

away with the need for optimization, and allow the use of a

single evaluation at each scale factor.
The bounds described here are only for quality measures

based on the mean response times. By ignoring the

constraints imposed by some resources (such as locks and

critical sections), and making optimistic assumptions about

overhead costs and task execution demands, an analytic

queueing model results (although not usually as simple one

as the cases described in Section 3). The resulting value of  

should always be larger than the true value, and may be

quite a bit larger. However, the bound does capture the

effect of the raw balance of power and demand along the

scaling path, as represented by the total demands for

execution operations on the set of devices. And if the bound

shows scalability is inadequate, the more detailed calcula-

tion will show it even lower. In the major example in the

next section, the bound gave a useful indication of the more

detailed result.
Client-server systems are usually ªclosed,º in the sense

that they contain a certain number of users who issue

requests into the system, and wait for responses. If one

ignores software resources (such as process threads and

memory), and makes a few other assumptions, they may be

modelled as closed queueing networks. Then two of the

ªbalanced job boundsº in [13] give an upper bound on the

throughput, and a lower bound on the mean response time.

These bounds evaluate the system with its total workload

spread equally across all the processors and devices. This

correctly captures the increase in processing power, the

replication of services in the scaling strategy, and the

overheads associated with the scaling path (e.g., consistency

management overheads associated with replicating a

database).
Because the productivity is an increasing function of

throughput (which is overestimated by the bound), and a

decreasing function of response time (which is under-
estimated), the productivity and scalability calculated using

the bounds are always overestimated. This supposes that

the exact cost factors can be used, and that the base case is

correctly evaluated.
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5.1 Algorithm for the Scalability Bound

The steps in calculating the scalability bound are then:

Step 1. Determine the productivity for the base case, F �1�,
by a detailed calculation.

Step 2. For each scale factor k, determine the scaled system
configuration from the scaling strategy. Compute the
total seconds of execution of each device, averaged per

response, as follows:

. Execution and overhead, which is determined and
assigned to each device by the scaling strategy is
calculated first.

. The remaining execution demand is added up over
the remaining tasks and spread (optimistically) over
all the devices, so as to produce the most even
distribution of the total demand, expressed in
seconds of execution per response. That is, it is
allocated without regard to allocating entire tasks to
one device, but with regard to whether the device
can do the work (so, CPU demand is spread over
CPUs and disk demand over disks).

Optimistic assumptions about overheads mean that they
are set to the lowest value consistent with the scaling
strategy; thus, if two tasks included in the remaining
demand should be allocated separately (by the scaling
strategy), internode communications overhead is included.

The result of this step is a set of demands which may still
be unequally distributed over the devices, because of

constraints in spreading the workload.

Step 3. At scale k, set C�k� to the cost of the scaled system,
and following ([13] chapter 5), find bounds on � and T :

. set ��k� to the minimum of 1) the balanced system
throughput bound for a queueing network with the
same servers, and 2) the asymptotic throughput
bound for the given set of demands

. set T �k� to the balanced job value

. compute F �k� from (3).

Step 4. Set the scalability metric bound to  � F �k�=F �1�,
and then the bound-based scalability limit is the first
value of k giving a y that drops below the ªmoderate
scalabilityº limit of 1ÿ ".
The queueing network model with the evenly spread

workload is constructed so that it intuitively gives a
performance bound; however, the relationship is not
rigorously proven. The intuitive reasons for believing it
gives a bound are:

. software resource constraints are ignored, which can
only improve performance,

. allocation decisions which are enablers in the
strategy are represented in the bound by the greatest
possible degree of load balancing, which should give
better performance than the best feasible allocation
that respects task granularity, and

. overhead that is not explicitly required by the
scaling strategy is omitted.

The bounds can show the consequences of changing
demands and power with k. Suppose that the scaling

strategy resulted in a total demand (in seconds of execution,
adding over all nodes) of D�k� � g1�k�, the number of nodes
(all equally fast) is g2�k�, and there is a user delay (not
included in the response time) of Z0. Then the bound
calculation is:

Davg�k� �D=g2�k� � g1�k�=g2�k�
R�k� �D�k� � �N ÿ 1�Davg�=�1� Z0=D�k��

�g1�k� � �N ÿ 1��g1�k�=g2�k���g1�k�=�Z0 � g1�k���
T �k� �R�k� � Z0:

The bound on the scalability metric can then be
expressed as:

 bnd�k� � Fbnd�k�
F �1�

�
min kN

Z0�g1�k���Nÿ1�g1�k�
g2�k��

g1�k�
�Z0�g1�k��

; 1
Dmax

� �
C�k�

�
1� 1

T̂

�
Z0 � g1�k� � �N ÿ 1� g1�k�

g2�k� �
g1�k�

�Z0�g1�k��
��
� F �1�

:

�9�
When the system is saturated, both the numerator and

denominator are dominated by the terms in the big round
brackets multiplied by �N ÿ 1�. The direct effect of adding
work (increasing g1�k�) is always to decrease  . The direct
effect of adding nodes is to increase g2�k� and C�k� both, so
as far as the bound is concerned the effect is neutral when
the system is saturated, and harmful to scalability when it is
not. The direct effect of causing a bottleneck node, due to a
scaling path that does not allow the load to be properly
balanced, is to increase Dmax and decrease scalability
through the last term in the numerator. All of these effects
are expected, but the equation gives a picture of the order of
the relationship.

A second version of the bounds analysis, which is closer
to a kind of approximation, is to use the bounding value for
performance and productivity in the base case also. This
puts all scale factors on an equal footing in regard to the
looseness of the bounds. However, it reduces the certainty
that the value of  bnd is in fact a bound, since the
denominator may be overestimated.

6 A CONNECTION-MANAGEMENT SYSTEM

This section analyzes the scalability of a connection
management system, based on the design and parameters
of a real industrial prototype. It is a design which evolved
out of a connection-management design described pre-
viously in [1] and [11].

Fig. 3 shows the major components in a prototype
connection management system for virtual private net-
works, intended to support applications such as video-
conferencing. The prototype was heavily influenced by
standards such as G.805 [20]. It was designed to be able to:

. set up a virtual private network joining user-
specified end-points, and allocating the network
resources in such a manner as to meet the QoS
requirement,
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. manage a variety of heterogeneous switching equip-
ment, for the purpose of setting up end-to-end
connections,

. use the allocated resources of the virtual private
network and let the user set-up/tear down connec-
tions arbitrarily, among any of the sites.

The prototype was implemented using a network of

workstations running UNIX, with DCE middleware to

handle intertask communications and transparency, and a

backbone network based on a SONET OC-12 (622 Mbit/s)

optical fiber ring with proprietary switching equipment on

which cross-connections can be made or released as

required. The software tasks can be roughly classified into

three logical layers:

. The topology layer that deals with the connection
topology of the virtual private network (VPN),
connecting all the user-specified endpoints (e.g.,
the User-Network Interface identifiers±UNI's±in the
case of an ATM network). Once a virtual private
network is established, the objects in the topology
layer can directly communicate with the lowest layer
(called SONET here), in order to set up virtual
channels over this VPN.

. The virtual path (VP) layer, that deals with connect-
ing all the sites in a virtual private network with a
virtual path. This corresponds to provisioning the
network resources to meet user-specified bandwidth
and QoS, to support future connections.

. The SONET layer that supports a virtual path by
setting up appropriate connections on the SONET
ring.

Following is a brief description of the tasks in

Fig. 3:

- The client tasks represents the users that set up
(or dismantle) the virtual private network and
set up (or dismantle) connections on an existing
virtual private network. The clients could be the
software tasks that manage higher level applica-
tions, e.g., a video conferencing system that uses
the given connection management system.

The clients interact with the topology layer to set

up the virtual private network, as well as the

connections on it (VC's or the virtual channels).

The frequency of setting up/releasing a VPN, which

is like a leased line, is much lower than that of

setting up/releasing temporary connections by a

ratio of 1:50.

. Topo_setup and Topo_delete: these tasks belong to
the topology layer discussed above, and support
setting up VPNs as well as connections within a
VPN. The necessary routing functions are built
into the setup entries of these tasks and of their
servers.

. VP: This task sets up and deletes virtual paths
(VPs) that make up a VPN.

. SONET: This task manages the fibre-level port-
to-port connections required to support the
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setting up of the VP layer trails, which in turn
help set up the VPN.

. Subnet_connect: This task directly controls the
SONET network elements.

. Database: The database stores objects related to
the various functional layers in the system and
provides state data to all the functions.

The database, which is accessed heavily by almost all the
tasks in the system, clearly is a potential hot spot in the
system. By measurement it was verified that the database
indeed had the greatest demands for both VPN setup/
release, as well as connection setup/release, and would
limit scalability if its capacity were not increased. One
approach to this is database replication, which was
considered as an element in the scaling strategy. As we
shall see, the hazard in replication is heavy overhead.

The prototype system was instrumented and measured
to obtain workload parameters for the performance model,
which was used to evaluate the scalability.

6.1 Scaling Strategy for the Connection
Management System

The scaling strategy was to introduce replications of the
database, using the location-based replication paradigm
described by Trantafiliou and Taylor in [21]. For each
database replica, an additional processor was also added to
the system. (We note that the location-based paradigm was
motivated by reliability as well as performance, and the
reliability effects are not rewarded in the value function f
used here.)

The scale factor was set to be the number of database
replicas. A fixed number of five processors was provided to
run the other tasks in a fixed configuration, and the number
of users was taken as a scalability enabler. Further enablers
that were not used could have been the allocation of the
tasks other than the database tasks to the processors, and
replicas and additional processors for the other functions.

For each scale factor a performance model was set up
with the replicas and their overheads, with overhead
amounts calculated from the number of replicas, and the
requests sent from any client entry to the database task were
equally divided among all the replicas. The fixed remote
invocation overheads were incorporated in the execution
demands of the task entries. The fact that the accesses to the
database replicas were symmetric happens to permit a
special efficient approximation for symmetric replication of
subsystems to be used in the solver [22].

In order to model the consistency management overhead
(in terms of extra execution), each replica of the database is
associated with a transaction overhead pseudo-task on the
same CPU. The transaction overhead task accounts for the
synchronous and asynchronous broadcasting overheads,
locking overheads, etc., for consistency management, and
the calls made by the database entries to the overhead task
during the operation prepare, commit, and abort phases are
proportional to the number of database replicas in the
system.

The number of write transactions is significant, but the
granularity of the database objects is small, so the
probability of conflict on locks was assumed to be negligible
and lock queueing delays were not modeled. However, the

execution overheads of locking were substantial and were

included.
The response of the system was modeled as a cycle of

effort for one conference, including setting up and tearing

down five virtual channels for a video conference between

the two sites, plus one time in ten it included setting up a

VPN, as well. The cycle had a target time of 15 minutes

(T̂ � 15 min.). Load was generated by a number of users,

who were modeled as having a ªthinking timeº of

10 minutes, between one cycle and the next.
The provisioning cost for the base configuration, includ-

ing one copy of the database server, and one processor per

software task, is taken as $100,000. Each extra copy of the

database server (including a new dedicated processor) is

assumed to cost an additional $5,000. This gives a cost per

unit time of the form Constant�1� 0:05k�.
The reference configuration of the system had a single

database copy, and was also optimized with respect to the

number of clients, giving a reference productivity of

702 cycles of activity per hour per unit cost, and a reference

throughput of 95 cycles of activity per hour. (That is, setting

up and tearing down 9.5 virtual private networks, and

setting up and tearing down about 475 virtual channels per

hour).

6.2 Scalability Bound

Step 1. The base configuration with six processors is

optimized with respect to the number of clients, to

obtain 23 clients, 95 operation units per hour and

productivity F � 1:95� 10ÿ5 units/hour.

Step 2. At each scale factor, with k database replicas and

k database processors, the balanced demand is calcu-

lated, including the overheads. In this case,

total demand; D � 14:44� �22:11k� sec:;

average demand � Davg�k� � �14:44� �22:11k��=�k� 5�sec:;

Dmax � 35:08 sec:;

response time � D� �N ÿ 1�Davg=�1� �Z=D��
Z0 � 600 sec:;

cost � C�k� � 1� 0:05k units=sec:

Steps 3 and 4. The solution gives the response time T �
D� �N ÿ 1�Davg=�1� �Z=D�� and throughput � � N�Z0 �
T � for the balanced system. Substituting into (9), we get the

following expression for the scalability bound:

 bnd�k� �

5:13� 104 min kN
Z0�D��Nÿ1� D

�k�5�� D
�Z0�D�

; 1
Dmax

� �
�1� 0:05k�

�
1� 1

T̂
� ÿZ0 �D� �N ÿ 1� D

�k�5� � D
�Z0�D�

�� : �10�

The total demand, the number of processors, and the cost

all grow linearly with k. For large k, the scalability metric

bound drops as kÿ2. In fact, it is the increasing overhead

demands which cause the devices to saturate and limit the

scalability. The equation gives the plot in Fig. 4. If the

acceptable scalability limit is 0.8, it is reached at scale factor

of k � 8. This is similar to the conclusion obtained in the
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next section, which derives a limit of 5 from a more detailed

analysis.

6.3 Scalability Metric: Full Calculation

The full calculation optimizes the productivity function

with respect to the available scalability enabler (the number

of clients) at each scale factor. The results are summarized

in Table 1.
The table shows that the scaling strategy and optimiza-

tion give response times which are well within the target at

all scales, but scalability is only moderate. The throughput

increases from k � 1 to k � 2 and then levels off, while costs

rise, which drives the scalability down. The Database CPU

columns show that most of the database work is overhead,

at the larger scales. Fig. 5 shows the detailed scalability

measure and the bound plotted together.
The results show the system is spinning its wheels,

generating overhead but not performance. The rate of

setting up and deleting video conference connections is

increased from 475 to 555/hour. The database costs rise to

about 30 percent of the initial cost, which included just one
database.

Even though it reaches a scale factor of 5, the useful
throughput increases by less than 20 percent. This empha-
sizes the fact that the scale factor defined in this work is just
an index into the plan; it is not a measure of the increase in
productive work. The replications are cheap but do not
achieve much for productivity. The overall ratio of the read
to write operations is approximately 2:1. A higher read-to-
write ratio would give less coordination overhead, and
greater scalability.

For further scale-up on this system, the results indicate
some possible directions:

1. The database schema could be reworked to reduce
the number of separate transactions.

2. The routing algorithms at the topology, VP, and
SONET layer made heavy use of database transac-
tions, and could be redesigned to reduce the
database operations.

3. It might be possible to partition the database objects,
instead of replicating the whole database. For
example, in this case, the ATM objects and the
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TABLE 1
Scalability Analysis Results for the Connection Management System

Fig. 5. Scalability by the detailed calculation and by the bound:

Connection Management System.
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SONET objects could possibly be partitioned into
two disjoint parts, by redesigning the database
schema.

7 SCALABILITY ANALYSIS OF A CALL PROCESSING

SYSTEM PROTOTYPE

The second example is a prototype call-processing system
for digital telephony, based on proprietary message-
oriented middleware. The objective of the evaluation is to
assess:

. up to what point a product would be scalable, if built
using the same basic design decisions,

. how investment should be made in the hardware
and software components of the system for support-
ing different numbers of users, and

. the impact of the location service-based replication
model for database transactions, [21].

7.1 The Architecture of the Call Processing System

This system differs from the traditional call processing
systems used in digital telephony. It is implemented using a
message-oriented middleware based on a fast ATM net-
work. The objective is to minimize the latency, and to
bypass the overheads in RPC stubs, the TCP/IP protocol,
etc., in order to make the distributed call processing as fast
as possible.

The system is based on some of the concepts described in
[23]. The U-Net communication architecture uses a virtual
view of the network interface that can be directly accessed
at user level, allowing direct access to high-speed commu-
nication devices. Removing/bypassing the communication
subsystem's boundary with the application-specific proto-
cols achieves efficient communication protocols with re-
duced system call overheads, and more importantly, allows
buffer management at the user level. Multiplexing/
demultiplexing is embedded directly into the network
interface. Thus, the network interface is virtualized, and
each process has an illusion that it owns the direct interface
to the network. This enables abstracting out the network
interface for some applications, while still supporting
legacy protocols through the kernel.

Dedicated ATM virtual channel circuits are used for call

setup, with additional channels for the actual voice traffic.

This scalability analysis assumes that there is sufficient

ATM network capacity for the voice traffic, so it is not

modeled. The model concentrates on the objects that

collaborate to set up an end-to-end call connection.

7.2 The Processing Steps and the Hardware
Platform

Fig. 6 shows the hardware platform used in the prototype
call-processing system. The hosts (IBM Power PCs running
AIX, 133 MHz) are connected to an ATM network. Each
host has the call processing software that supports the two
half-call models, one half for call origination and one for call
termination [24].

Any process that wishes to access the network creates
one or more objects called endpoints, allocates memory for
storing the messages (called the communication segment) and
creates a set of send, receive, and free message queues with
each endpoint.

To send a message, a user process composes the data in
its communication segment and pushes a descriptor for the
message onto its send queue. The network interface, which
is embedded in an integrated device driver, then picks up
the message and sends it over the existing connection in the
ATM network. Incoming messages are demultiplexed and
transferred to the appropriate communication segment, and
a message descriptor is pushed on the corresponding
receive queue. Each process polls its receive queue
periodically, to check for arrivals.

The system has a ªtrue zero copyº architecture in which
the data is transferred from the sender's communications
segment to the receiver's, without intermediate buffering.
The communication segments span the process address
space and the sender specifies an offset within the
destination communication segment, at which the message
data is to be deposited directly by the network interface.

Error checking and correction is handled at the applica-
tion level. In this work, it is assumed that the communica-
tions medium is sufficiently reliable, and sufficient memory
is available, to let us ignore the performance effects of
recovery from errors and buffer overflows.

7.3 Software Organization and Layered Model

Fig. 7 shows the software involved in a call, at the level of
processes and interactions. It actually shows a layered
queueing network model which, as well as the software
tasks, includes components for all the Users, the hardware
network drivers, and the network delay, as ªtasksº with
their own delays. However, it does not model the
individual software objects. The prototype which was
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measured had two nodes, and invoked a total of about 80

objects per call, among all the collaborating processes.
Call setup is managed by an originating half-call-setup

process communicating with a terminal half-call-setup

process. The originating process uses a location server to

determine which database replica to use, and then obtains

authentication data and network addresses from the

database. Almost all the database requests in normal

operation are reads, since writes only occur for new

customers, changes in a customer's service profile, and

changes in the physical network.
Each node has a sufficient number of agents, and may or

may not have one or both of a database replica and a

location server replica.

7.4 Scaling Strategy and Results

The number of CPUs in the system was chosen as the scale

factor, and the scalability enablers are the allocation of

software objects, replication of the database and the location

server, and the number of clients. Threads are not allocated

explicitly, since they are assumed to be inexpensive, and are

provided as a thread-per request.
The scalability was analyzed over a scale factor interval

of 1-15. The results of the optimization are presented below,

in Table 2. The same data is plotted in Fig. 8, along with the

results of the bounds analysis.
The factors which have to be balanced in the optimiza-

tion of the scalability enablers include:

. Collocation and distribution of software tasks.
Collocation reduces the remote invocation overhead
but may cause a load imbalance in the overall
system.

. Replication of the database, which affects load
balancing, remote invocation costs, overheads for
coordination (and thus, latency), and system cost.
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(Replication of the location server, however, does
not have a cost or overhead associated with it.)

The overhead latencies due to database replication, measured

per response, have been summarized in Table 3. These

results correspond to the optimum replication levels

mentioned in Table 2.
The remote invocation overheads incurred are different for

each CPU; the maximum among them are plotted in Fig. 8f.

Overall, the results show that scalability is reasonable up

to a factor of 3. Beyond this, the scalability metric degrades,

although capacity continues to increase up to a factor of

about 10. Beyond this, the system is bottlenecked and

capacity is saturated.
Some details shown by Tables 2 and 3 and by Fig. 8 are:

. In Fig. 8a, the available productivity of the system
drops gradually up to k � 3, and then more steeply.
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. Fig. 8b shows the scalability metric. It drops to 0.8 at
about k � 4, indicating scalability up to a factor of 4.

. Fig. 8c shows the throughput, with a knee at about
k � 3. At this point, it has been increased from about
1.09 million calls per hr. to about 3.3 million calls per
hr., while maintaining a good QoS. For scale factors
beyond 3, the optimization gives a response time a
little higher than the target value (which is encour-
aged by the metric, because it also gives a higher
throughput).

. Fig. 8d shows the replication of the location server
and the database server, which follows a generally
increasing trend with a lot of variation. The cost-
benefit balance of replicas in the middle range is
pretty well neutral, so the optimizer has stopped in
different parts of the space in different runs. In fact,
at k � 10 and 15, the optimizer chooses to leave
CPUs unused (one at 10, two at 15), in order to be
able to collocate some of the objects and save on
remote-invocation overheads. Due to the existence of
unused CPUs (one unused CPU for scale factor = 10,
and two for scale factor = 15), the maximum CPU
utilization is the same as Umax ÿ Umin, as seen in Fig.
8e.

. Fig. 8e gives a picture of the load balance, which
becomes worse as the number of CPUs increases,
because of constraints on allocation, differences in
task demands, and remote invocation costs. At k �
10 and 15, the minimum utilization is zero because
of unused processors.

. As the software tasks are spread out across more
CPUs, they incur increasing remote invocation
overheads, as seen in Fig. 8f. The worst overhead
percentage among the processors is plotted; it levels
off at about 50 percent.

7.5 Summary

Thus, we conclude that the call-processing system is

scalable up to a scale factor of 4, at which point it can

support about 3.3 million calls per hour. If it needs to be

scaled beyond this point in a cost-effective manner, the

following improvements could be tried:

. The organization of software objects into concurrent
tasks could be redesigned to make their execution
and communication demands more equal.

. The database schema could be modified so the
database could be partitioned in various domains
rather than replicating it, and the consistency
management overheads can be reduced. However,

the location service faces an increased execution
demand in such a scenario.

The optimization by simulated annealing took about

10 hours (on a SPARC Ultra-1 workstation) for each scale

factor. This is entirely practical for a major evaluation, but it

is also quite heavy, and a faster optimization technique

would be preferred.

8 CONCLUSIONS

The proposed strategy-based scalability metric generalizes the

well-known metrics for scalability of parallel computations,

to describe heterogeneous distributed systems. In these

systems, a uniform increase in all types of components is

usually not a reasonable scaling strategy.
The principal new features of this metric are: separating

the impact of throughput and response time on the metric,

formalizing the notion of a scaling strategy, introducing a

quality-of-service evaluation, and introducing formal scal-

ability enablers which are optimized at each scale factor.

The metric is the ratio of the system's productivity in a

scaled version, to the productivity of a base case. Relating

scalability to productivity is consistent with quite general

quality-of-service evaluation, and with previous work on

metrics for parallel systems.
The previous scalability metrics are special cases. For

example, in scalability based on fixed size speedup, the

scaling strategy is to use k processors, throughput is the

inverse of completion time, cost is k, and the QoS function is

F � 1. For scalability based on fixed-time speedup, the

scaling strategy is to use k processors, but to also change the

workload W to a value which keeps the completion time

constant. Throughput is now constant, cost is k, and the QoS

function is F �W .
The new strategy based scalability metric gives reason-

able results for a large collection of idealized and well-

understood system models, in the form of queueing models

suitable for distributed systems. While it requires substan-

tial effort to apply it to real systems, the effort is

manageable.
The contributions of this work are the new framework

(including an open-ended range of possibilities for different

quality-of-service evaluation functions, and for different

scaling strategies), the new metric, a bounding calculation,

and practical numerical techniques for evaluating the

metric on real systems. These techniques are applied to

two substantial problems which have not been described

before, to indicate both the scaling limits and how the

scalability might be improved.
The new framework is only applied here using models,

to evaluate systems that have not yet been deployed, but it

could also be used with measurements to evaluate live

deployed scaled systems.
The paper has defined scaling only with a single scale

factor, but the framework applies equally to multiple scale

factors, describing independent scaling of different attri-

butes of the system. The productivity and scalability would

then be defined as functions of a vector k.
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